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Things that don’t work

� Before vs. After comparisons

� Compares individuals/communities before and after program

� But does not control for time trends

� Treated vs. Untreated comparisons

� Compares treated to those untreated

� But does not control for selection — why didn’t untreated get treated?
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Two wrongs make a right (sometimes)

� Difference-in-Differences combines the (biased) pre vs. post and (biased) treated
vs. non-treated comparisons

� Sometimes this overcomes selection bias and time trends

� Basic idea: observe the (self-selected) treatment group and a (self-selected)

comparison group before and after the program

δDD =
(
Y

treated
post − Y

treated
pre

)
−
(
Y

comparison
post − Y

comparison
pre

)
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Two wrongs make a right (sometimes)
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� Intuitively

� Y
treated

post − Y
treated

pre = treatment effect + time trend

� Y
comparison

post − Y
comparison

pre = time trend

� δDD = treatment effect
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Two wrongs make a right

δDD =
(
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treated
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treated
pre
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−
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Y

comparison
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=

(
Y

treated
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comparison
post
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−
(
Y

treated
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� Intuitively II

� Y
treated

post − Y
comparison

post = treatment effect + selection bias

� Y
treated

pre − Y
comparison

pre = selection bias

� δDD = treatment effect
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The simple 2×2

Treated Comparison

Pre Y
Treated
Pre Y

Comparison
Pre

Post Y
Treated
Post Y

Comparison
Post

� Intuitively, diff-in-diff estimation is just a comparison of 4 cell-level means

� Only one cell is treated: Treatment×Post
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Difference-in-Differences estimation

� Let δ denote the true impact of the program

δ = E[Y1i |Ti = 1, t = τ ]− E[Y0i |Ti = 1, t = τ ]

� Assumption: δ does not depend on the time period (τ) or i ’s characteristics
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Difference-in-Differences estimation

The assumption underlying difference-in-difference estimation boils down to:

� In the absence of the program, individual i ’s outcome at time t is given by

E[Yi |Ti = 0, t = τ ] = γi + λτ

� Two implicit identifying assumptions

1. Selection bias relates to fixed individuals characteristics (γi )

� Selection bias does not change over time

2. Time trend (δτ ) same for treatment and comparison groups

� Common/parallel trends assumption

12



Difference-in-Differences estimation

In the absence of the program, individual i ’s outcome at time t is given by

E[Yi |Ti = 0, t = τ ] = γi + λτ

Thus

E[Y comparison
pre ] = E[Yi0|Ti = 0, t = pre] = E[γi |Ti = 0] + E[λτ |t = pre]

E[Y comparison
post ] = E[Yi0|Ti = 0, t = post] = E[γi |Ti = 0] + E[λτ |t = post]

E[Y treated
pre ] = E[Yi0|Ti = 1, t = pre] = E[γi |Ti = 1] + E[λτ |t = pre]

E[Y treated
post ] = E[Yi1|Ti = 1, t = pre] = δ + E[γi |Ti = 1] + E[λτ |t = post]
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Treated/Untreated comparison

E[Y treated
post ]− E[Y comparison

post ] = δ + E[γi |Ti = 1] + E[λτ |t = post]−
E[γi |Ti = 0− E[λτ |t = post]

= δ + E[γi |Ti = 1]− E[γi |Ti = 0]︸ ︷︷ ︸
selection bias
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Post/Pre comparison

E[Y treated
post ]− E[Y treated

pre ] = δ + E[γi |Ti = 1] + E[λτ |t = post]−
E[Yi0|Ti = 1, t = pre] = E[γi |Ti = 1]− E[λτ |t = pre]

= δ + E[λτ |t = post]− E[λτ |t = pre]︸ ︷︷ ︸
time trend
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Difference in Difference comparison

δDD =
(
Y

treated
post − Y

treated
pre

)
−
(
Y

comparison
post − Y

comparison
pre

)
= (δ + E[γi |Ti = 1] + E[λτ |t = post]− E[γi |Ti = 1]− E[λτ |t = pre])−

(E[γi |Ti = 0] + E[λτ |t = post]− E[γi |Ti = 0]− E[λτ |t = pre])

= (δ + E[λτ |t = post]− E[λτ |t = pre])−
(E[λτ |t = post]− E[λτ |t = pre])

= δ

Diff-in-Diff recovers the impact of the program on participants (if assumptions aren’t

violated)
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Difference in Difference comparison

� Diff-in-Diff does not rely on assumption of homogeneous treatment effects

� When treatment effects are homogeneous, DD estimation yields average

treatment effect on the treated (ATT)

� If not, it averages across treated units and over time

� When impacts change over time (within treated units), DD estimate of treatment

effect may depend on choice of evaluation window
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Regression DD

� It’s easy to calculate the standard errors

� We can control for other variables which may reduce the residual variance (and

smaller standard errors)

� It’s easy to include multiple periods (and varying treatment timing)

� We can study treatments with different treatment intensity



DD in a Regression Framework

To implement diff-in-diff in a regression framework, we estimate:

Yi,t = α + βTi + ζPostt + δ (Ti ∗ Postt) + εi,t

where:

� Posti is an indicator equal to 1 if t = 2

� δ is the coefficient of interest (the treatment effect)

� α = E [γi |Ti = 0] + λ1: pre-program mean in comparison group

� β = E [γi |Ti = 1]− E [γi |Di = 0]: selection bias

� ζ = λ2 − λ1: time trend
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DD in a Regression Framework

� Another option is to use Two-Way Fixed Effects (TWFE)

� With more than two periods of data using TWFE can increase statistical power

Yi,t = α + ηi + νt + γTi,t + εi,t

� ηi unit fixed effects (replaces the Postt dummy)

� νt time fixed effects (replaces the Ti dummy)
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DD in a Regression Framework

PRE POST 

y

 

 time
 

Treatment

Control
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DD in a Regression Framework
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 time
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DD in a Regression Framework

Event study framework includes dummies for each post-treatment period:

Yi,t = α + ηi + νt + γ1T1i,t + γ2T2i,t + γ3T3i,t + . . .+ εi,t

When treatment intensity is a continuous variable:

Yi,t = α + βIntensityi + ζPostt + δ (Intensityi ∗ Postt) + εi,t
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Seguro Popular

71

American Economic Journal: Economic Policy 2014, 6(4): 71–99 
http://dx.doi.org/10.1257/pol.6.4.71

The Trade-Offs of Welfare Policies  
in Labor Markets with Informal Jobs:  

The Case of the “Seguro Popular” Program in Mexico †

By Mariano Bosch and Raymundo M. Campos-Vazquez *

In 2002, the Mexican government began an effort to improve health 
access to the 50 million uninsured in Mexico, a program known as 
Seguro Popular (SP). The SP offered virtually free health insurance 
to informal workers, altering the incentives to operate in the formal 
economy. We find that the SP program had a negative effect on the 
number of employers and employees formally registered in small and 
medium firms (up to 50 employees). Our results suggest that the pos-
itive gains of expanding health coverage should be weighed against 
the implications of the reallocation of labor away from the formal 
sector. (JEL E26, I13, I18, I38, J46, O15, O17)

Around 60 percent of global workers work in unregulated jobs with no access 
to basic benefits such as health insurance, workers compensation, death and 

disability insurance, or retirement pensions.1 They are normally called the informal 
workers in opposition to the workers covered by formal social security programs. 
However, in the last two decades national governments around the globe have 
pushed policies to give access to some of the traditional benefits of contributory 
social security to informal workers at zero or virtually no cost. Today, some 30 mid-
dle-income countries are implementing programs which aim to advance the transi-
tion to universal health coverage, and many others are considering launching similar 
programs (Giedion, Alfonso, and Díaz 2013).2 The overall impact of these policies 
has two distinct ramifications. On the one hand, they clearly increase welfare for the 
uninsured, as they ensure health coverage without financial hardship. On the other, 
they change the incentives in the labor market and may induce a reallocation of 
labor from formal jobs, where workers and firms are taxed to obtain health coverage, 

1 Pallares-Miralles, Romero, and Whitehouse (2012).
2 The expansion of noncontributory pensions in the world mirrors this trend. These pensions aim at providing 

income for the elderly that were either inactive or informal during their active years and do not qualify for a pension. 
In the last two decades 51 countries have implemented noncontributory pensions (HelpAge International 2013).

* Bosch: Inter-American Development Bank (IADB), 1300 New York Avenue, Washington, DC 20577 (e-mail: 
mbosch@iadb.org); Campos-Vazquez: Centro de Estudios Económicos, El Colegio de México (CEE-COLMEX), 
Camino al Ajusco 20, Col. Pedregal de Santa Teresa, DF, México 10740 (e-mail: rmcampos@colmex.mx). We are 
very grateful to Eva Arceo, Matias Busso, Gerardo Esquivel, Santiago Levy, Luis Felipe López-Calva, Carmen 
Pagés, Norbert Schady, Sivan Tamir, and two anonymous referees for very useful comments and suggestions, and 
we wish to thank seminar and conference participants at El Colegio de México, Inter-American Development Bank, 
University of California, Berkeley, and the LACEA conference in Chile (2011). All remaining errors are our own.

† Go to http://dx.doi.org/10.1257/pol.6.4.71 to visit the article page for additional materials and author  
disclosure statement(s) or to comment in the online discussion forum.
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Seguro Popular

� Mexico’s current social protection system was born in 1943.

� Formal Sector workers and their families are part of the social protection system

(IMSS/ISSSTE)

� Informal sector workers are uninsured

� By 2000, the inequalities in this system were apparent.

� Nearly 50 % of the Mexican population (∼ 47 million) was uninsured

� World Health Organization ranked Mexico 144/191 in fairness of health care

� The Mexican Ministry of Health estimated that 10 to 20% of the population,

suffered catastrophic and impoverishing health care expenses every year
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Seguro popular

� The Sistema de Protección Social en Salud, System for Social Protection in

Health (SPS), was designed in the early 2000s to address some of these issues

� A key component of this reform was the Seguro Popular program.

� Passed into law in 2004 as a modification of the existing General Health Law, the

program actually began with a pilot phase in 5 states in 2002

� Provide health insurance to the 50 million uninsured

� States and municipalities offered virtually free health insurance to informal

workers altering the incentives for workers and firms to operate in the

formal/registered economy
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Identification strategy

� Take advantage of the staggered implementation of the program across

municipalities
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Seguro Popular
82 AMErIcAn EcOnOMIc JOurnAL: EcOnOMIc POLIcy nOvEMBEr 2014
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Figure 2. Share of Covered Municipalities and Population: 2000–2009

notes: The figure shows the share of municipalities treated (left y-axis) and the SP take-up rate 
as a percentage of total population (right y-axis). Number of beneficiaries obtained from the 
administrative records of SP and population from the 2000 Population census and 2005 popu-
lation count.

Figure 3. Number of Affiliated to Seguro Popular, IMSS,  
and Other Health Providers with SP: 2000–2011

notes: The figure shows the number of individuals affiliated (workers and their families) with 
the different health services provided. The Seguro Popular, IMSS, and Others (which include 
public servants and semipublic firms such as Mexico Petroleum Company PEMEX). Figures 
correspond to the first quarter of every year. 

Source: Secretaria de Salud (2011)
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Data

� Data from the Instituto Mexicano de Seguro Social (IMSS) records for the entire

universe of municipalities in Mexico from 2000 to 2009

� Merge with the administrative records of Seguro Popular by municipality
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The Common Trends Assumption

� The key assumption for any DD strategy is that the outcome in treatment and
control group would follow the same time trend in the absence of the treatment

� This doesn’t mean that they have to have the same mean of the outcome

� Alternatively, the assumptions underlying diff-in-diff estimation:

� Selection bias relates to fixed characteristics of individuals (γi )

� Time trend (λt) same for treatment and control groups

� These assumptions cannot be tested directly — we have to trust!

� As with any identification strategy, it is important to think carefully about whether it

checks out both intuitively and econometrically
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Losing parallel trends

� If parallel trends doesn’t hold, then ATT is not identified

� But, regardless of whether ATT is identified, OLS always estimates the same thing

� OLS uses the slope of the control group to estimate the DD parameter, which is

only unbiased if that slope is the correct counterfactual for the treatment



Parallel leads, not trends

� Parallel trends cannot be directly verified because technically one of the parallel

trends is an unobserved counterfactual

� But one often will check using pre-treatment data to show that the trends had

been the same prior to treatment

� But, even if pre-trends are the same one still has to worry about other policies

changing at the same time (omitted variable bias)
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The Common Trends Assumption
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Sometimes, the common trends assumption is clearly OK
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The Common Trends Assumption
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Other times, the common trends assumption is fairly clearly violated
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The Common Trends Assumption

Or is it? DD is robust to transformations of the outcome variable
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Defending the Common Trends Assumption

Three approaches:

1. A compelling graph

2. A falsification test or, analogously, a direct test in panel data

3. Controlling for time trends directly

� Drawback: identification comes from functional form assumption

None of these approaches are possible with two periods of data
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Approach #1: DD Porn

Source: Naritomi (2015)
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Event study regression

� Including leads into the DD model is an easy way to analyze pre-treatment trends

� Lags can be included to analyze whether the treatment effect changes over time

after assignment

� The estimated regression would be:

Yits = γs + λt +

−q∑
τ=−1

γτDsτ +
m∑
τ=0

δτDsτ + xist + εist

� Treatment occurs in year 0

� Includes q leads or anticipatory effects

� Includes m leads or post treatment effects



Approach #3: Event Study
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Variation in Treatment Timing

Example: municipalities introduced Seguro Popular at different times
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Fixed Effects Estimates of βDD

Yit = αi + γt + βDDDit + εti
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Fixed Effects Estimates of βDD

Yit = αi + γt + βDDDit + εti

unit fixed effects time fixed effects treatment dummy
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Fixed Effects Estimates of βDD

Yit = αi + γt + βDDDit + εti

unit fixed effects time fixed effects treatment dummy

What exactly is βDD?
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Fixed Effects Estimates of βDD

Frisch-Waugh (1933): Two-way fixed effects regression is equivalent to univariate

regression:

Ỹit = D̃it + ζti

where

Ỹit = Yit − Ȳi −
(
Ȳt − ¯̄Y

)
and

D̃it = Dit − D̄i −
(
D̄t − ¯̄D

)

Which is cool, but doesn’t really tell us what the estimand is
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Decomposition into Timing Groups

 

y

 

 time
 

Early Timing Group (A)

Late Timing Group (B)

Never-Treated Group (C)

Goodman-Bacon (2019): panel with variation in treatment timing can be decomposed

into timing groups reflecting observed onset of treatment
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Decomposition into Timing Groups

t=1 t=2 t=3 

y

 

 time
 

Early Timing Group (A)

Late Timing Group (B)

Never-Treated Group (C)

Example: with three timing groups (one of which is never treated), we can construct

three timing windows (pre, middle, post or t = 1, 2, 3)
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Decomposition into Standard 2× 2 DDs

pre post
 

y

 

 time
 

Early Timing Group (A)

Late Timing Group (B)

Never-Treated Group (C)

Group A vs. Group C

pre post
 

y

 

 time
 

Early Timing Group (A)

Late Timing Group (B)
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Group B vs. Group C

pre post
 

y

 

 time
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 time
 

Early Timing Group (A)
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Group B vs. Group A
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Decomposition into Standard 2× 2 DDs

pre post
 

y

 

 time
 

Early Timing Group (A)

Late Timing Group (B)

Never-Treated Group (C)

Group A vs. Group C

We know the DD estimate of the treatment effect for each timing group:

β̂DD
AC =

(
Ȳ POST
A − Ȳ POST

C

)
−
(
Ȳ PRE
A − Ȳ PRE

C

)
=
(
Ȳ t=2,3
A − Ȳ t=2,3

C

)
−
(
Ȳ t=1
A − Ȳy

t=1
C

)
56



Decomposition into Standard 2× 2 DDs

pre post
 

y

 

 time
 

Early Timing Group (A)

Late Timing Group (B)

Never-Treated Group (C)

Group B vs. Group A

We know the DD estimate of the treatment effect for each timing group:

β̂DD
BA =

(
Ȳ POST
B − Ȳ POST

A

)
−
(
Ȳ PRE
B − Ȳ PRE

A

)
=
(
Ȳ t=3
B − Ȳ t=3

A

)
−
(
Ȳ t=2
B − Ȳy

t=2
A

)
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DD Decomposition Theorem (aka D3 Theorem)

Theorem
Consider a data set comprising K timing groups ordered by the time at which they first

receive treatment and a maximum of one never-treated group, U. The OLS estimate

from a two-way fixed effects regression is:

β̂DD =
∑
k 6=U

skU β̂
DD
kU +

∑
k 6=U

∑
j>k

[
skj β̂

DD
kj + sjk β̂

DD
jk

]

In other words, the DD estimate from a two-way fixed effects regression is a weighted

average of the (well-understood) 2× 2 DD estimates
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DD Decomposition Theorem (aka D3 Theorem)

Weights depend on sample size, variance of treatment within each DD:

skU =

[
(nk + nU)2

V̂ D̃

]
nkU (1− nkU) D̄k(1− D̄k)︸ ︷︷ ︸

V̂ar
D̃

kU

skj =

[(
(nk + nj)

(
1− D̄j

))2

V̂ D̃

]
nkj(1− nkj)

(
D̄k − D̄j

1− D̄j

)(
1− D̄k

1− D̄j

)
︸ ︷︷ ︸

V̂ar
D̃

kj

sjk =

[(
(nk + nj) D̄k

)2

V̂ D̃

]
nkj(1− nkj)

D̄j

D̄k

(
D̄k − D̄j

D̄k

)
︸ ︷︷ ︸

V̂ar
D̃

jk

where nk is the proportion of the sample in group k , nkj = nk/(nk + nj), and D̄k is the

fraction of sample periods in which k is treated 59



DD Decomposition Theorem (aka D3 Theorem)

Weights depend on sample size, variance of treatment within each DD:

skU =

[
(nk + nU)2

V̂ D̃

]
nkU (1− nkU) D̄k(1− D̄k)︸ ︷︷ ︸

V̂ar
D̃

kU

skj =

[(
(nk + nj)

(
1− D̄j

))2

V̂ D̃

]
nkj(1− nkj)

(
D̄k − D̄j

1− D̄j

)(
1− D̄k

1− D̄j

)
︸ ︷︷ ︸

V̂ar
D̃

kj

sjk =

[(
(nk + nj) D̄k

)2

V̂ D̃

]
nkj(1− nkj)

D̄j

D̄k

(
D̄k − D̄j

D̄k

)
︸ ︷︷ ︸

V̂ar
D̃

jk

where nk is the proportion of the sample in group k, nkj = nk/(nk + nj), and D̄k is

the fraction of sample periods in which k is treated
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Implications of the D3 Theorem

1. When treatment effects are homogeneous, β̂DD is the ATE

2. When treatment effects are heterogeneous across units (not time), β̂DD is a

variance-weighted treatment effect that is not the ATE (as usual with OLS)

⇒ Weights on timing groups are sums of skU , skj terms

3. When treatment effects change over time, β̂DD is biased

⇒ Changes in treatment effect bias DD coefficient

⇒ Event study, stacked DD more appropriate
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Implications of the D3 Theorem

DD in a potential outcomes framework assuming common trends:

Yit =

Y0,it if Dit = 0

Y0,it + δit if Dit = 1

β̂DD
kU and β̂DD

kj (where k < j) are familiar, but β̂DD
jk is different:

β̂DD
jk = Ȳ POST

0,j + δ̄POST
j −

(
Ȳ POST

0,k + δ̄POST
k

)
−
[
Ȳ PRE

0,j −
(
Ȳ PRE

0,k + δ̄PREk

)]
= δ̄POST

j +
[(
Ȳ POST

0,j − Ȳ POST
0,k

)
−
(
Ȳ PRE

0,j − Ȳ PRE
0,k

)]︸ ︷︷ ︸
common trends

+
(
δ̄PREk − δ̄POST

k

)︸ ︷︷ ︸
∆δk
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Implications of the D3 Theorem

DD in a potential outcomes framework assuming common trends:

Yit =

Y0,it if Dit = 0

Y0,it + δit if Dit = 1

β̂DD
kU and β̂DD

kj (where k < j) are familiar, but β̂DD
jk is different:

β̂DD
jk = Ȳ POST

0,j + δ̄POST
j −

(
Ȳ POST

0,k + δ̄POST
k

)
−
[
Ȳ PRE

0,j −
(
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0,k + δ̄PREk

)]
= δ̄POST

j +
[(
Ȳ POST

0,j − Ȳ POST
0,k

)
−
(
Ȳ PRE

0,j − Ȳ PRE
0,k

)]︸ ︷︷ ︸
common trends

+
(
δ̄PREk − δ̄POST

k

)︸ ︷︷ ︸
∆δk
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Weights discussion

� Think about what causes the treatment variance to be as big as possible. Let’s
think about the sku weights.

1. D = 0.1. Then 0.1× 0.9 = 0.09

2. D = 0.4. Then 0.4× 0.6 = 0.24

3. D = 0.5. Then 0.5× 0.5 = 0.25

� What’s this mean? The weight on treatment variance is maximized for groups

treated in middle of the panel



More weights discussion

� But what about the “treated on treated” weights? What’s this Dk − D l business

about?

� Well, same principle as before - when the difference between treatment variance is

close to 0.5, those 2×2s are given the greatest weight

� For instance, say t∗k = 0.15 and t∗l = 0.67. Then Dk − D l = 0.52. And thus

0.52× 0.48 = 0.2496.



TWFE and centralities

� Groups in the middle of the panel weight up their respective 2×2s via the variance

weighting

� But when looking at treated to treated comparisons, when differences in timing

have a spacing of around 1/2, those also weight up the respective 2s2s via

variance weighting

� But there’s no theoretical reason why should prefer this as it’s just a weighting

procedure being determined by how we drew the panel

� This is the first thing about TWFE that should give us pause, as not all

estimators do this



Difference-in-Difference
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Standard errors in DD strategies

� Many paper using DD strategies use data from many years – not just 1 pre and 1

post period

� The variables of interest in many of these setups only vary at a group level (say a

state level) and outcome variables are often serially correlated

� As Bertrand, Duflo and Mullainathan (2004) point out, conventional standard

errors often severely understate the standard deviation of the estimators –

standard errors are biased downward (i.e., too small, over reject)



Standard errors in DD – practical solutions

� Bertrand, Duflo and Mullainathan propose the following solutions:

1. Block bootstrapping standard errors (if you analyze states the block should be the

states and you would sample whole states with replacement for bootstrapping)

2. Clustering standard errors at the group level

3. Aggregating the data at the group level



DD Robustness

� Very common for readers and others to request a variety of “robustness checks”

from a DD design

� Think of these as along the same lines as the leads and lags we already discussed

� Event study (already discussed)

� Falsification test using data for alternative control group

� Falsification test using alternative “placebo” outcome that should not be affected by

the treatment



Takeaways

1. Stack the 2× 2 DDs to asses common trends (visually)

⇒ Trends should look similar before and after treatment

⇒ Treatment effect should be a level shift, no a trend break

⇒ How much weight is placed on problematic timing groups?

2. Plot the relationship between the 2× 2 DD estimates, weights

⇒ No heterogeneity? No problems!

⇒ Heterogeneity across units is an object of interest
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Concluding remarks on DD

� Chances are you are going to write more papers using DD than any other design

� Goodman-Bacon (2018, 2019) is worth your time so that you know what you are

estimating

� De Chaisemartin & D’Haultfoeuille (2020) and Callaway & Sant’ann (2019) are

also worth your time if you decide to run a diff-in-diff
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